Lecture 5
Def. In a eetric space $(x, d)$, a segnesce $\left(x_{n}\right)$ is raid ( $\dot{x}$ to converge to $x \in X$ if $\forall$ neighbourhood $U$ of $x$, $\forall \infty_{n} x_{n} \in U$. We denote this by $\lim _{n} x_{n}=x$ or $x_{n} \rightarrow x$.

Obs. For a sequence ( $x_{n}$ ) al $x \in X$, TFAE (The Following Are $E_{\text {quivaleat): }}$
(a) $x_{n} \rightarrow x$.
(b) $\forall B_{\varepsilon}(x) \quad \forall^{\infty}{ }_{n} \in \mathbb{N} \quad x_{n} \in B_{\varepsilon}(x)$ (replace neighbourhood by $\left.b_{a} l l\right)$ ).
(c) $d\left(x_{n}, x\right) \rightarrow 0$.

Unignenen of limit. The linit is nuigne is metric spaces. Pood. Lit $x_{n} \rightarrow x$ al $x_{n} \rightarrow x^{\prime}$. It's enough bo show Xt $d\left(x^{\prime}, x\right)<\varepsilon$ for cal $\varepsilon>0$ (the "give yourself $\varepsilon$.f coom" trick). By 1 -iney.) $d\left(x, x^{\prime}\right) \leqslant d\left(x, x_{n}\right)+d\left(x_{4}, x\right)$ al for $\forall^{\infty} n$, $\left.d\left(x, x_{n}\right)<\varepsilon / 2 d(x), x_{n}\right)<\varepsilon / 2$, so $d\left(x, r^{\prime}\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon$.

Obs. An g convergent sequence $\left(x_{n}\right)$ is bounded, ie. $\operatorname{diam}\left(\left\{x_{0}, x_{1}, \ldots\right\}\right)<\infty \ll$ ball $B \geq\left\{x_{0}, x_{1}, \ldots\right\}$.
Proof. let $x_{n} \rightarrow x$. $F_{o}, \varepsilon:=1$, we kn the diam $\left(\left\{x_{n}, x_{n+1}, \ldots\right\}\right)$
$<2 \quad \forall_{n}^{\infty}$, so $\operatorname{dian}\left(\left\{x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}, \ldots\right\}\right) \leq$
$2+\max _{k=0}^{n} d\left(x_{k}, x_{n}\right)<\infty$, bs $A$-ines.
Examples. 0 I. $\mathbb{R}, \frac{1}{n} \rightarrow 0, \frac{(-1)^{n}}{n} \rightarrow 0$, bat $(-1)^{n}$ doern't converge although is bdl, $x_{n}=n$ doesuit converge in $\mathbb{R}$.
0 In $\mathbb{N}^{\mathbb{N}}$, for an $x \in \mathbb{N}^{\mathbb{N}}, x_{n}=\left(\left.x\right|_{n}\right) 12345 \ldots$, $x_{n} \rightarrow x$ be re $\forall$ ball around $x$ is of the form $\left[\left.x\right|_{N}\right]$, so $\quad \forall n \geqslant N \quad x_{n} \in\left[\left.x\right|_{N}\right]$.


Obs. In $\mathbb{N}^{\mathbb{N}}, x_{n} \rightarrow x \Leftrightarrow \forall$ index $i \in \mathbb{N}$ $\forall_{n}^{\infty} x_{n}(i)=x(i)$.
0 In $\mathbb{N}^{\mathbb{N}}, x_{n}=n 000 \ldots$ doesn't converge.
$0 \operatorname{In} 2^{\text {N }}$,
$x_{2 k}:=0000 \ldots$
$x_{2 k+1}=1000 \ldots$
then $\left(x_{n}\right)$ doesit converge.
Prof ( Closure via limits). For a metric space $(X, d) \quad(Y \subseteq X, \forall \times C X)$,

$$
x \in \bar{Y} \Leftrightarrow \exists \text { segrese }\left(y_{n}\right) \leq Y \text { s.t. } y_{n} \rightarrow x \text {. }
$$

Pcasf. $: x \Rightarrow \forall n, \exists_{y_{n}} \in Y$ such that $y_{n} \in B_{\frac{1}{n}}(x)$. Thas, $b_{y}$ let, $y_{n} \rightarrow x$ hese $d(y, x)<\frac{1}{4}$ $\rightarrow 0$.
$\Leftrightarrow \forall$ neighbarkood $U$ of $x, \forall_{n} x_{n} \in U$, i. particalar, $Y \cap U \neq \varnothing$, so $x$ is an allherent poict to $Y$, thus $x \in \bar{Y}$.

Sunseqnenees. A subsegnence $\left(x_{n_{k}}\right)$ of a segreace $\left(x_{h}\right)$ is jost another sequence $\left(y_{k}\right)$ whene $y_{k}=x_{n_{k}}$ ) for some strictf increasing segnence $\left(n_{k}\right)$ of uatural numbers. In particular, $n_{k} \geqslant k$.

Prop. For a sequence $\left(X_{n}\right)$ in a netric space $(X, d)$ al $x \in X$, TFAE:
(1) $x_{n} \rightarrow x$
(2) $\forall\left(x_{n_{k}}\right) \rightarrow x$.
false for $\infty$
(3) $\forall$ partition of $\left(x_{n}\right)$ into finetely anay subsequences al eale of then convege to $x$.
(4) $\forall$ subequence $\left(x_{n_{k}}\right) \quad \exists$ further subsegnence $\left(x_{n_{k_{e}}}\right) \rightarrow x$.

Proof. (1) $\Rightarrow(2) \Rightarrow(3)$. Trivial.
$(3) \Rightarrow(1)$. This follows tron the fact int

$$
\begin{aligned}
& \forall_{n_{1}}^{\infty} P_{1}\left(n_{1}\right) \wedge \forall_{n_{2}}^{\infty} P_{2}\left(n_{2}\right) \wedge \ldots \wedge \forall \forall_{n_{k}}^{\infty} P_{k}\left(n_{k}\right) \\
& \Leftrightarrow \quad \forall n\left(P_{1}(n) \wedge P_{2}(n) \wedge \ldots \wedge P_{k}(n)\right) .
\end{aligned}
$$

( $P_{\text {roof }}$. Take the max of $N_{1}, N_{2}, \ldots, N_{k}$.)
(1) $\Rightarrow(4)$. Trivial.
$(4) \Rightarrow(1)$. We prove the contrapositive. Suppose $\left(x_{n}\right)$ doesn't converge to $x$. Then $\exists$ neighbourhood $U$ of $x$ sit. $\exists n x_{n} \notin U$. Then $\exists$ subsegnere (auprised of these indices) ( $x_{n, c}$ ) sit. $\forall k \in \mathbb{N}$ $x_{n_{k}} \notin U$. By def, There is no subsegnese of $\left(x_{n_{x}}\right)$ that converges to $x$.

Characterization of closed via limits. Let $(X, d)$ be a metric space al let $Y \leq X$. Than $Y$ is closed of (it al only ff) $\forall\left(y_{n}\right) \subseteq Y \quad \forall x \in X$ if $y_{n} \rightarrow x$ then $x \in Y$.
Proof. $\Rightarrow$. Lt $\left(y_{n}\right) \leq Y$ be sit. $y_{n} \rightarrow x$. Then $\forall$ neighourbod $U$ of $x, \forall \infty_{L} y_{n} \in U$ so $Y \cap U \neq \varnothing$, so $x \in \bar{Y}=$ $=Y$ base $Y$ is closed.
$\varepsilon$. We need to chon int $\bar{Y}=Y$. let $x \in \bar{Y}$.

Then, $h$ y shat we proved above, $\exists\left(y_{n}\right) \leq Y$ sit. $y_{a} \rightarrow x$. But then $x \in Y$ by our assumption.

Candy sequences. A senueace ( $x_{L}$ ) in a metric space ( $x d$ ) is called Cauchy if the diameter of the tail of the segnence converges to 0 , ie.

$$
\lim _{n} \lim \left(\left\{x_{n}, x_{n}+1, \ldots\right\}\right)^{\prime}=0 .
$$

In other words, $\forall \varepsilon>0$ J $N \quad \forall n, a \geqslant N \quad \&\left(x_{n}, x_{n}\right)<\varepsilon$.
In particular, $\operatorname{dian}\left(\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}\right)<\infty$, so Cauchy sequences are bounded.

Examples. O Every convergent sequence is Candy. Proof. By the triangle inequality.
$x_{n} \rightarrow x$ then

$$
d\left(x_{n}, x_{n-}\right) \leq d\left(x_{n}, x\right)+d\left(x_{n}, x\right) \text { when }
$$

- A sentence $\left(x_{n}\right)$ is called contractive if $\exists \alpha \in(0,1)$ sit. $\forall n \quad d\left(x_{n+2}, x_{n+1}\right) \leq \alpha \cdot d\left(x_{n-1}, x_{n}\right)$.

Example. $x_{0}, x_{1} \in \mathbb{R}, x_{0}<x_{1}$

$x_{n+2}:=\frac{1}{2}\left(x_{n+1}+x_{n}\right)$, ie. eat teen is the average of the previous two terms.

$$
\begin{aligned}
d\left(x_{n+2}, x_{n+1}\right) & =\left|x_{n+2}-x_{n+1}\right|= \\
& =\left|\frac{1}{2} x_{n+1}+\frac{1}{2} x_{n}-x_{n+1}\right| \\
& =\frac{1}{2}\left|x_{n}-x_{n+1}\right|=\frac{1}{2} d\left(x_{n}, x_{n+1}\right)
\end{aligned}
$$

so $\left(x_{n}\right)$ is contraction.

Prop. Contractive segnenes are Cauchy.
Proof. $\forall n, m \in \mathbb{N}, \downarrow^{4 \text {-ines }}$.

$$
\begin{aligned}
& d\left(x_{n}, x_{n+m}\right) \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\ldots \\
& \ldots+d\left(x_{n+n-1}, x_{n+n}\right) \\
&= d\left(x_{n}, x_{n+1}\right)+\alpha d\left(x_{n}, x_{n+1}\right)+ \\
&+\alpha^{2} d\left(x_{n}, x_{n+1}\right)+\ldots+d^{n-1} d\left(x_{1}, x_{n}\right) \\
&=d\left(x_{n}, x_{n+1}\right) \cdot\left(1+d+d^{2}+\ldots+d^{m-1}\right) \\
&=d\left(x_{n}, x_{n+1}\right)= \frac{1-\alpha}{1-\alpha} \\
& \leq \alpha^{n} d\left(x_{0}, x_{1}\right)= \frac{1}{1-\alpha} \rightarrow 0 \leftrightarrow n \rightarrow \infty
\end{aligned}
$$

Conntrexagle for $d\left(x_{n+2}, x_{n+1}\right)<d\left(x_{n+1}, x_{n}\right)$. In $\mathbb{R}$,

$$
x_{n}:=\sum_{k=1}^{n} \frac{1}{k} \text {, then } N\left(x_{n+2}, x_{n+1}\right)=\frac{1}{n+2}<\frac{1}{n+1}=d\left(x_{n+1}, x_{n}\right)
$$

but $\left(x_{n}\right)$ doesn't converse.

